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Abstract. A graph H is d-degenerate if every subgraph of it contains a vertex of degree smaller than 
d. For a graph G, let ad(G) denote the maximum number of vertices of an induced d-degenerate 
subgraph of G. Sharp lowers bounds for %(G) in terms of the degree sequence of G are obtained, 
and the minimum number of edges of a graph G with n vertices and ~2(G) < m is determined 
precisely for all m < n. 

1. Introduction 

All graphs considered here are finite and simple. A graph H is d-degenerate if 
every non-null  subgraph of  it contains a vertex of  degree smaller than d. Thus 
1-degenerate graphs are graphs with no edges and 2-degenerate graphs are forests. 
Fo r  a graph G and for d > 1, let aa(G) denote the max imum number  of  vertices of  
an induced d-degenerate subgraph of G. In this paper  we study the min imum 
possible number  of  edges ed(n, m) of a graph G with a given number  n of vertices 
and a given value m of0ca(G ). Notice that since a l (G)is just  the independence number  
of  G, the numbers  el (n, m) are determined by the well-known theorem of Turfin [6], 
which asserts that  el(n, m) is the number  of edges of  a disjoint union of  m cliques, 
whose sizes are as equal as possible and whose total size is n. This gives 

el(n,m)= ~ . (1.1) 
i=0  

2n 
The situation is more  complicated for d = 2. For  m > -~-, let Gl(n, m)denote the 

graph consisting of  the disjoint union of  n - m triangles and 3m - 2n isolated 

even m = 2s < 2n  let G2(n, m) denote the disjoint union of s cliques, vertices. For  
D 
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whose sizes are as equal as possible, and whose total size is n. For odd m = 2s + 1 < 

~ l e t  (n, m) denote the disjoint union of one isolated vertex and s cliques, whose G 3 

sizes are as equal as possible, and whose total size is n - 1. One can easily check 
that each of these graphs G'(n,m) has n vertices and satisfies ct2(G'(n,m)) = m. The 
following theorem asserts that any graph G with n vertices and with ~2(G) = m has 
at least as many edges as the corresponding Gi(n, m). 

2n 
Theorem 1.1. Let G = (V, E) be a graph with n vertices, and let 0t2(G ) = m. I f  m >_ 

T 
2 2 

then IEI >_ IE(Gl(n,m))[. I f  m <_ ~n is even then IEI _> IE(G2(n,m))l, and if m < -~n is 

odd then [E[ > E(G3(n, m)). Thus, the function e2(n, m) is determined by the following 

"(i) For m > 2n/3, e2(n,m ) = 3(n - m). 

"-l ([(n + i)/s]) 
(ii) For m = 2s < 2n/3, e2(n,m ) = • 

;=o 2 

(iii) For m = 2s + 1 < 2n/3, e2(n,m ) = ~ 
i=0 2 

formula. 

(1.2) 

Tur~n's Theorem and Theorem 1.1 imply that for d < 2 and for all d _ m _ n, 
there is a graph G with n vertices, that satisfies ~a(G) = m and has the minimum 
possible number of edges, where G is a disjoint union of almost equal cliques and, 
possibly, some isolated vertices. This is not true for large values of d, as shown in 
the next Proposition. 

Proposition 1.2. As d = 2s tends to infinity, e2(3d, 3d) = (1 + o(1))- 3d 2, whereas the 
minimum number of edges of a graph G = (V,E) with 3d vertices which is a disjoint 
union of cliques and isolated vertices and satisfies ~a(G) = ~d is (1 + o(1)).Zg~d2. 

The proof of Proposition 1.2 uses a random construction, which suggests that 
it might be hopeless to determine ed(n, m) precisely for all d, n and m. Interestingly, 
ed(n, m) can be determined precisely in many cases. In particular, we can determine 
ea(n, m) precisely for all triples (d, n, m) where dim and m < n/2. To do this we prove 
the following result which supplies a lower bound for ~ta(G) in terms of the degree 
sequence of G. 

Theorem 1.3. Let G = (V, E) be a graph and let d(v) denote the degree of v ~ V. Then 

cq(G) > E min(1,  ~ d -  1)" (1.3) 
-o~v \ d(v)+ 

This bound is sharp for every G which is a disjoint union of cliques. Moreover, there 
is a polynomial time algorithm that finds in G an induced d-degenerate subgraph of 
this size or greater. 
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1 
For  d = 1 (1.3) reduces to o~(G) >- ,,~vE d(v) + 1" This special case was proved 

by Wei [7] and independently by Caro  (cf. [5])  It also follows easily from a 
well-known result of Erd6s (cf. [3, Theorem VI. 1.4], [5]). Theorem 1.3 implies the 
following. 

Corollary 1.4. Let  G = (V, E) be a graph with n vertices and average degree d >>_ 2d - 2. 
nd 

Then as(G) > - -  - l + d  

For  d = 1 this reduces to the well-known estimate , (G) ~ n/(1 + d) for the 
independence number  of a graph G (see, e.g. [2, Corol lary  2 to Theorem 13.5]). We 
remark that  every d-degenerate graph is d-colorable and thus Theorem 1.3 and 
Corol lary 1.4 supply lower bounds for the max imum number  of vertices of an 
induced d-eolorable subgraph of G. 

Our  paper  is organized as follows. In Section 2 we prove a slightly strengthened 
version of Theorem 1.1. In Section 3 we prove Proposi t ion  1.2 and Theorem 1.3. 
The final Section 4 contains a few related problems. 

2. Induced Aeyelic Subgraphs 

In this section we prove Theorem 1.1. For  convenience we split the p roof  into three 
lemmas. 

L e m m a  2.1. Suppose that m >_ 2n/3, and let G = (V,, E) be a graph with n vertices, e 
edges and with 0~2(G ) < m. Then 

e >__ 3(n - m). (2.1) 

Moreover, if  m > 2n/3 and equality holds in (2.1), then G has at least one isolated 
vertex. 

Proof. We first prove the inequality (2.1) for every fixed m by induction on n for 
m < n < 23-m. The inequality is trivial for n = m. Assuming it holds for n - 1 we 
prove it for n. If there is a vertex v E V whose degree d(v) is at least 3, let H = G - v. 
Then since e 2 ( H ) <  m and hence, by the induction hypothesis, H has at least 
3(n - 1 - m) edges, we deduce that  e > 3 + 3(n - 1 - m) = 3(n - m), as needed. 
Therefore we can assume that  the maximum degree of a vertex of G is < 2, i.e., G 
is a union of paths and cycles. Clearly, the number  of cycles must  be at least n - m 
(since the graph obtained by deleting one vertex from each of them is acyclic, i.e., 
2-degenerate). Since each cycle has at least 3 edges we conclude that  e > 3(n - m). 
This c~mpletes the p roof  of (2.1). Suppose, now, that  m > 2n/3 and that  equality 
holds in (2.1), i.e., e = 3(n - m) < n. Now G contains no bridges, for i f f  is a bridge 
of G t h e n  0~2(G - f )  = 0~2(G ) ~ m, which is impossible since IE(G - f ) l  < 3(n - m). 
Therefore G contains no vertices of degree 1. Since the average degree of vertices 
of G is smaller than 2, it follows that  G has at least one isolated vertex, as needed. 

[ ]  
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L e m m a  2.2. Let s be an integer, let m = 2s < 2n/3 and let G = (V, E) be a graph with 
n vertices and e edges, and with ~2(G) <_ m. Then there are s positive integers nl, n2, 
. . . .  n s such that 

~ n , = n  and e > _ ~ ( n ' ~ .  (2.2) 
/=1  /=1  \ z /  

Hence 

e >_ E • (2.3) 
i = 0  

Proof. O b v i o u s l y  (2.2) impl i e s  (2.3), W e  p r o v e  (2.2) for  eve ry  f ixed m = 2s b y  
i n d u c t i o n  o n  n for  n_> ~m = 3s. F o r  n = 3s (2.2) w i th  n l  = n2 . . . . .  n~ = 3 
fo l lows  f r o m  L e m m a  2.1. A s s u m i n g  (2.2) h o l d s  for  n - 1 we p r o v e  it for  n, n > 3s. 
Le t  v e V be  a ve r t ex  of  m a x i m u m  degree  d(v) = A in G. P u t  H = G - v. C l ea r l y  

IV(H) = n - 1 a n d  ~2(H) _< m < 2(n - 1). Hence ,  b y  the  i n d u c t i o n  hypo thes i s ,  
the re  a re  s pos i t i ve  in tegers  l 1 ~ 12 ~ " ' "  ~ I s such  t h a t  Z l i  = n - 1 a n d  [E(H)I > 

,~  ( ~ ) .  In particular lE(H)l > ½(n - 1 ) . ( l l  - 1 ) .  On the other hand, 

IE(n)l _< ½(A-(A - 1)+ (n - 1 - zJ). A ) < ½ ( n  - 1) .A.  

I ndeed ,  b y  the  cho ice  of  v, eve ry  ver tex  of  H has  degree  a t  m o s t  A, a n d  each  of  
the  A n e i g h b o r s  of  v in  G has  degree  a t  m o s t  A - 1 in H.  H e n c e  ½ ( n -  1). 

A > ½(n - 1)(l 1 - 1) a n d  zJ > 11 - 1, i.e., zl > 11. Def ine  n 1 = 11 + 1 a n d  ni = li for  
2 < i < s. T h e n  ~7=1 ni = n a n d  

e = I E ( G ) I = A + I E ( H ) I > l l + , = I ~ ( ~ ) = i = I ~ ( 2 ~ ) "  

This  c o m p l e t e s  the  p r o o f  of  (2.2). [ ]  

2 n +  1 
L e m m a  2.3. Let s be an integer and suppose that m = 2s + 1 <_ - - .  Let G = 

3 
(V,E) be a graph with n vertices and e edoes and suppose that ~2(G) < m. Then there 
are s positive integers nl, n2, . . . ,  ns such that 

i=1  i=1  

Hence 

e > ~S-l ( [(n + 2 " 

Moreover, if equality holds in (2.5) then G has an isolated vertex. 

(2.4) 

(2.5) 

3 m -  1 
Proof. F o r  eve ry  f ixed m = 2s + 1 we a p p l y  i n d u c t i o n  on  n for  n > ~ - 

3s + 1. F o r  n = 3s + 1, (2.4) wi th  n l  . . . .  = n2 = 3 (which  is (2.5)) fo l lows f rom 
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Lemm a  2.1. Lemma  2.1 also asserts that if equality holds here then G has an isolated 
vertex. Assuming the assertion of Lemma 2.3 holds for n - 1, we prove it for n, 
n > 3s + 1. Let  v e V be a vertex of maximum degree d(v) = A in G. Put  H = G - v. 

2 ( n - 1 ) + l  Hence, by the Clearly IV(H)[ = n -  1 and e2(H) < m = 2s + 1 < 3 " 

induct ion hypothesis, 

~-~ 
IE(H)[ > (2.6) \ 2/' 

where I, = [(n + i - 2)/s] for 0 < i < s. Moreover ,  it equality holds in {2.6) then H 
has an isolated vertex. By (2.6) 

2[E(H)[ > (n - 2)(lo -- 1) (2.7) 

and equali ty can hold here only if equality holds in (2.6) and l o = l~_ 1. On the other  
hand, each of the A neighbors of v in G have degree at most  d - 1 in H, and each 
other  vertex of H has degree at most  A. Hence 

21E(n)l < A.(A -- 1) + (n - -  1 -- A).A = ( n -  2).A. (2.8) 

Equali ty can hold here only if precisely ,4 vertices of H have degree A - 1 in H and 
all other  vertices have degree ,4 in H. By (2.7) and (2.8) ,4 > lo - 1 and equality can 
hold only if equality holds both in (2.7) and in (2.8). However,  if equality holds in 
(2.7) then equality holds in (2.6) and hence H contains an isolated vertex. But in 
this case the minimum degree of a vertex of H is 0, which is smaller than A - 1 > 

l o - 2, since l o > 3 as n > 3s + 2 and l o = [(n - 2)/s]. Hence in this case equality 
cannot  hold in (2.8). We thus conclude that  A > lo - 1, i.e., A > lo. Define no = 
l o + l a n d n * = l  i f o r l < i < s . T h e n ~ - o * n i = n - l a n d  

e = [E(G)I = ,4 + [E(H)I > to + E = • (2.9) 
i=O i = 0  

This implies (2.4) and hence also (2.5). It remains to show that  if equality holds in 
(2.5) then G contains an isolated vertex. Suppose equality holds in (2.5). Then 
equality holds in (2.9). As A > lo, this implies that  equality holds in (2.6), since 
otherwise inequality (2.9) is strict. But this means that  H has an isolated vertex w. 
Thus, the degree of w in G is either 0 or 1. However,  if it is 1 then G contains a 
bridge f ,  which is impossible since o t h e r w i s e  ~2(G - f )  = ~2(G) <<_ m and G - f 
does not  have enough edges. Therefore w is an isolated vertex of G. This completes 
the proof. [ ]  

Theorem 1.1 dear ly  follows from Lemmas 2.1, 2.2 and 2.3. Thus the function 
e2(n,m) is determined by formula (1.2). 

3. Induced d-degenerate  Subgraphs 

Proof of Theorem 1.3. Let G = (V, E) be a graph and let de(v ) denote  the degree of 
v~ V. Define the weight we(v ) of v to be 1 if de(v ) < d and d/(d~(v) + 1) otherwise. 
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(Notice that  the two definitions coincide if do(v) = d - 1.) The weight w(G) of G is 
defined to be Ev~v wG(v). In this nota t ion  inequality (1.3)is just  the assert ion that  
~a(G) > w(G). We prove  this s ta tement  by induction on the number  n of  vertices of  
G. It  is trivial for n = 1. Assuming it holds for n - 1, we prove it for n. If  there is 
a vertex v e  V with dG(v ) < d, let H = G - v. Then ~a(G)= ~xa(H ) + 1; but  since 
dn(u ) < do(u) for all u~ Vk{v}, w(H) > ~,~v\{v} wo(u) = w(G) - 1. By the induction 
hypothesis  ota(H ) > w(H) -- 1 and hence ~a( G) = ~d(H) + 1 > w( G), as needed. Thus  
we m a y  assume that  do(v ) > d for all v ~ V, and therefore wo(v) = d/(do(v) + 1) for 
all v~ V. Let  u be a vertex of m a x i m u m  degree do(u ) = ,4 in G. Put  H = G - u. One 
can easily check that  w(H) > w(G). Indeed, if u~, u2 . . . . .  u~ are the "4 neighbors of 
u i n  G then 

d 
w ( n ) =  

d 
=w(G) 

d 
=w(G) 

+ 1  

'~ d a d 

= .= d d u , )  

A d + 
+ 1) 

d dA 
w(G) '4 + 1 + + - 

By the induct ion hypothesis  ~a(H) > w(H) >_ w(G), a n d  since o~a(G ) > ~a(H), in- 
equali ty (1.3) follows: 

If  G = (V, E) is a disjoint union of s cliques of  sizes l~ < 12 < "'" < I~ then dea r ly  

i=i veV 0) -~ 1 

i.e., inequality (1.3) is sharp. It  is also clear f rom the p roof  that  there is a po lynomia l  
t ime a lgor i thm that  finds in a given graph G an induced d-degenerate subgraph  H 
with at least w(G) vertices. This completes  the p roof  of Theorem 1.3. [ ]  

Suppose, now, that  G = (V, E) is a g raph  with n vertices and e edges. One  can 

d + 1 then ca(G) = n so we may  assume e > By easily check that  if e < 2 - 2 " 

Theorem 1.3 ca(G) _> w, where w is the min imum possible value of the expression 

1 d 
~ r a i n ( ' d ~ - i - )  (3.1) 

subject to the constraints  

~, di = 2e and 0 _< dl are integers. (3.2) 
i=l 

(In fact, d~ . . . . .  d, should also be a degree sequence of a simple graph,  but  we will 
not  use this fact here.) Suppose that  the min imum of (3.1) subject to (32) is  obta ined  
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for di = bi(i = 1,. . . ,  n). Clearly if b i < d for some i we may assume bi = 0, since a 
replacement of such a b~ by 0 and a replacement of some other bj by bj + bi does 
not increase the sum (3.1), (for d, = hi). Also, we may assume that the set of positive 

1 1 1 1 
b~'s attains at most two consecutive values, since bl + ~  ~- b2 _ 1 < ~-x + ~-2 for 

d < b I < b 2 - 1. Similarly, one can easily verify the following two simple facts. 

Fact 1. I f  2e >_ m" (2d - 2) for  some m < n, and the number o f  positive b~' s is l, where 
l < m, then the sum (3.1) is not increased by changing one o f  the zeros to 2d - 2 and 
by decreasing the positive b~'s by a total o f  2d - 2 in such a way that each o f  them is 
still at least 2d - 2. 

Fact 2. I f  2e <_ m" (2d - 1) for  some m < n and the number o f  positive bi's is l, where 
l > m, then the sum (3.1) is not increased by changing the minimum of  the positive bi's 

f rom its value, say x, to O, and by increasing the other positive bi's by a total o f  x in 
such a way that each o f  them is still at most 2d - 1. 

Using the above two facts we prove the following Proposition, whose first part 
implies Corollary 1.4. 

Proposition 3.1. Let  G = (V, E) be a graph with n vertices, e edges and average degree 
i f =  2e/n. Then: 

d . r  
(i) /f d > Z d - 2  and 2 e = n k + r ,  where O < _ r < n ,  then ~ a ( G ) > _ k + 2  + 

d" (n - r) d" n 
>_ 

k + l  l + d - "  
(ii) /f 2e can be written as a sum o f  m <_ n positive integers bl, . . . ,  bin, where each b i 

is either 2d - 2 or 2d - 1, then ~td(G ) >_ 
i=1 bi + 1" 

Proof. (i)By Fact 1 and the above discussion, the minimum of (3.1)subject to (3.2) 
is obtained when all the b~'s are positive and are as equal as possible. This implies, 

dr d ' ( n -  r) The last quantity is at least by Theorem 1.3, that ota(G ) > k + 2 + k + ~ "  

d. n/(1 + d), by the convexity of the function g(y) = 1/(y + 1). 
(ii) In this case clearly m'(Zd  - 2) < 2e < m.(2d  - 1) and hence, by Fact 1 and 
Fact 2, we may assume that the number of positive b,'s for which the minimum of 
(3.1) subject to (3.2) is obtained is m. Since the positive b,'s should be as equal as 
possible, the desired result follows, by Theorem 1.3. [] 

Proposition 3.1 is sharp whenever there is a disjoint union of cliques and isolated 
vertices, whose degree sequence is the sequence (b~). This supplies the exact value 
of ed(n, m) in many cases, including, e.g., all (d, n, m), where d divides m and m < n/2. 
For this case e~(n, m) is the number of edges of the disjoint union of m/d almost 
equal cliques whose total size is n. Also, if G is a disjoint union of cliques and isolated 
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vertices, where each clique is of size 2d - 1 or 2d, then G has the minimum number 
of edges among all graphs with I V(G)I vertices whose largest induced d-degenerate 
subgraph is of size ad(G). Notice that G is not unique in general, since we can replace 
any set of d cliques of size 2d - 1 by d - 1 cliques of size 2d and d isolated vertices 
without changing either the number of edges or the value of ad(G). 

We conclude this section with the proof of Proposition 1.2, which shows that 
for some parameters (d, n, m), the extremal graph is not a disjoint union of cliques 
and isolated vertices. 

Proof of Proposition 1.2. By Corollary 1.4 ed(3d,3d) > ~d(2d - 1) = (1 + o(1))3d 2. 
Indeed, if G has 3d vertices and less than 3d(2d - l) edges, then its average degree 
d-is smaller than 2 d -  1 and hence G has an induced d-degenerate subgraph on 
more than ~d vertices. One can easily check that any disjoint union of cliques G 
on 3d vertices with  ~d(G) = 3d has at least as many edges as Kts/E)a , i.e., at least 
(1 + o(1))~s~d 2 edges. 

It remains to show that for every e > 0, if d > d(e) is even then ed(3d, 3d) < 
(1 + e)3d 2. Given e > 0, let d be a large even number, and let G = (V, E) be a random 
graph on a set V of 3d vertices, in which each edge is chosen, independently, 

2 + e  (3d~.2  + e  
with probability ~ - - .  The expected number of edges of G is \ 2 J 3 < 

(1 + 2 )  3d2, and thus, by the standard estimates for binomial distribution (see, e.g., 

[4]), for sufficiently large d, the probability that G has more than (1 + e)3d 2 edges 
is at most 1/2. To complete the proof we show that for large d, the probability that 
G has an induced d-degenerate subgraph H on 23-d vertices is smaller than 1/2. This 
will show that there exists a G with at most (1 + e)3d 2 edges and with ~a(G) < ~d, 
as needed. If H is d-degenerate, then its vertices can be linearly ordered in such a 
way that each vertex will have fewer than d neighbors in H among the vertices 
following it. Therefore, if H is a d-degenerate subgraph of G with ~d vertices, then 
the set of vertices of H can be partitioned into two disjoint sets of vertices, A and B, 

where IZl = f0  and IB[ = - f0  d , such that each a e A  has fewer than 

d neighbors in B. Hence, there are A and B of the above sizes in G, and the number 
of edges from A to B is less than I AI" d. The expected number of edges between A 

and B is I AI" [ B [ ' - - f -  > 1 + I A[" d. By Chernoff's inequality (cf. e.g., [4]), the 

probability that for fixed A and B the number of A -- B edges will be smaller than 
I a I-d is bounded by exp(-c(e)d 2) for some c(e) > 0. Since the number of choices 
for A and B is bounded by 

(3d) ./3d ~ 2 6d 
~d \IAIJ < 

we conclude that for sufficiently large d, the probability that G will contain sets A 
and B with the above properties is smaller than 1/2. This completes the proof. 

[] 
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4. Concluding Remarks 

Proposition 1.2 suggests that it might be hopeless to determine ed(n, m) precisely for 
all d, n and m. It might be interesting, however, to determine ed(n, m) for small values 
of d(> 2), and in particular to show that  for moderate d the extremal graphs are 
always disjoint unions of cliques and isolated vertices. 

Another interesting problem concerns the question discussed here for some 
restricted classes of graphs. For  example, one might try and improve Theorem 1.3 
and Corollary 1.4 for triangle-free graphs or for planar graphs. For  the former class, 
the methods of Ajtai, Koml6s Szemerrdi [1] (who obtain a better estimate than the 
one given by Corollary 1.4 for 0q(G), if G is triangle-free) might be useful. We 
conclude the paper with the following interesting conjecture of Akiyama which 
deals with the latter class. 

Conjecture 4.1 (Akiyama). For every planar graph G with n vertices, ~2(G) > n/2. 
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